3.1923 \(\int \frac{(a d e+(c d^2+a e^2) x+c d e x^2)^{3/2}}{d+e x} \, dx\)

Optimal. Leaf size=201 \[ \frac{\left (c d^2-a e^2\right )^3 \tanh ^{-1}\left (\frac{a e^2+c d^2+2 c d e x}{2 \sqrt{c} \sqrt{d} \sqrt{e} \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\right )}{16 c^{3/2} d^{3/2} e^{5/2}}+\frac{\left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{3 e}+\frac{1}{8} \left (\frac{a}{c d}-\frac{d}{e^2}\right ) \left (a e^2+c d^2+2 c d e x\right ) \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2} \]

[Out]

((a/(c*d) - d/e^2)*(c*d^2 + a*e^2 + 2*c*d*e*x)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/8 + (a*d*e + (c*d^
2 + a*e^2)*x + c*d*e*x^2)^(3/2)/(3*e) + ((c*d^2 - a*e^2)^3*ArcTanh[(c*d^2 + a*e^2 + 2*c*d*e*x)/(2*Sqrt[c]*Sqrt
[d]*Sqrt[e]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])])/(16*c^(3/2)*d^(3/2)*e^(5/2))

________________________________________________________________________________________

Rubi [A]  time = 0.110995, antiderivative size = 201, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 37, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.108, Rules used = {664, 612, 621, 206} \[ \frac{\left (c d^2-a e^2\right )^3 \tanh ^{-1}\left (\frac{a e^2+c d^2+2 c d e x}{2 \sqrt{c} \sqrt{d} \sqrt{e} \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\right )}{16 c^{3/2} d^{3/2} e^{5/2}}+\frac{\left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{3 e}+\frac{1}{8} \left (\frac{a}{c d}-\frac{d}{e^2}\right ) \left (a e^2+c d^2+2 c d e x\right ) \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2} \]

Antiderivative was successfully verified.

[In]

Int[(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2)/(d + e*x),x]

[Out]

((a/(c*d) - d/e^2)*(c*d^2 + a*e^2 + 2*c*d*e*x)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/8 + (a*d*e + (c*d^
2 + a*e^2)*x + c*d*e*x^2)^(3/2)/(3*e) + ((c*d^2 - a*e^2)^3*ArcTanh[(c*d^2 + a*e^2 + 2*c*d*e*x)/(2*Sqrt[c]*Sqrt
[d]*Sqrt[e]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])])/(16*c^(3/2)*d^(3/2)*e^(5/2))

Rule 664

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((d + e*x)^(m + 1)*(
a + b*x + c*x^2)^p)/(e*(m + 2*p + 1)), x] - Dist[(p*(2*c*d - b*e))/(e^2*(m + 2*p + 1)), Int[(d + e*x)^(m + 1)*
(a + b*x + c*x^2)^(p - 1), x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a
*e^2, 0] && GtQ[p, 0] && (LeQ[-2, m, 0] || EqQ[m + p + 1, 0]) && NeQ[m + 2*p + 1, 0] && IntegerQ[2*p]

Rule 612

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((b + 2*c*x)*(a + b*x + c*x^2)^p)/(2*c*(2*p +
1)), x] - Dist[(p*(b^2 - 4*a*c))/(2*c*(2*p + 1)), Int[(a + b*x + c*x^2)^(p - 1), x], x] /; FreeQ[{a, b, c}, x]
 && NeQ[b^2 - 4*a*c, 0] && GtQ[p, 0] && IntegerQ[4*p]

Rule 621

Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(4*c - x^2), x], x, (b + 2*c*x)
/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{d+e x} \, dx &=\frac{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{3 e}-\frac{\left (2 c d^2 e-e \left (c d^2+a e^2\right )\right ) \int \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2} \, dx}{2 e^2}\\ &=\frac{1}{8} \left (\frac{a}{c d}-\frac{d}{e^2}\right ) \left (c d^2+a e^2+2 c d e x\right ) \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}+\frac{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{3 e}+\frac{\left (c d^2-a e^2\right )^3 \int \frac{1}{\sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{16 c d e^2}\\ &=\frac{1}{8} \left (\frac{a}{c d}-\frac{d}{e^2}\right ) \left (c d^2+a e^2+2 c d e x\right ) \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}+\frac{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{3 e}+\frac{\left (c d^2-a e^2\right )^3 \operatorname{Subst}\left (\int \frac{1}{4 c d e-x^2} \, dx,x,\frac{c d^2+a e^2+2 c d e x}{\sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{8 c d e^2}\\ &=\frac{1}{8} \left (\frac{a}{c d}-\frac{d}{e^2}\right ) \left (c d^2+a e^2+2 c d e x\right ) \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}+\frac{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{3 e}+\frac{\left (c d^2-a e^2\right )^3 \tanh ^{-1}\left (\frac{c d^2+a e^2+2 c d e x}{2 \sqrt{c} \sqrt{d} \sqrt{e} \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{16 c^{3/2} d^{3/2} e^{5/2}}\\ \end{align*}

Mathematica [A]  time = 0.681475, size = 264, normalized size = 1.31 \[ \frac{\sqrt{c} \sqrt{d} \left (3 \left (c d^2-a e^2\right )^{7/2} \sqrt{a e+c d x} \sqrt{\frac{c d (d+e x)}{c d^2-a e^2}} \sinh ^{-1}\left (\frac{\sqrt{c} \sqrt{d} \sqrt{e} \sqrt{a e+c d x}}{\sqrt{c d} \sqrt{c d^2-a e^2}}\right )-\sqrt{c} \sqrt{d} \sqrt{e} \sqrt{c d} (d+e x) \left (-a^2 c d e^3 (8 d+17 e x)-3 a^3 e^5+a c^2 d^2 e \left (3 d^2-10 d e x-22 e^2 x^2\right )+c^3 d^3 x \left (3 d^2-2 d e x-8 e^2 x^2\right )\right )\right )}{24 e^{5/2} (c d)^{5/2} \sqrt{(d+e x) (a e+c d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2)/(d + e*x),x]

[Out]

(Sqrt[c]*Sqrt[d]*(-(Sqrt[c]*Sqrt[d]*Sqrt[c*d]*Sqrt[e]*(d + e*x)*(-3*a^3*e^5 - a^2*c*d*e^3*(8*d + 17*e*x) + a*c
^2*d^2*e*(3*d^2 - 10*d*e*x - 22*e^2*x^2) + c^3*d^3*x*(3*d^2 - 2*d*e*x - 8*e^2*x^2))) + 3*(c*d^2 - a*e^2)^(7/2)
*Sqrt[a*e + c*d*x]*Sqrt[(c*d*(d + e*x))/(c*d^2 - a*e^2)]*ArcSinh[(Sqrt[c]*Sqrt[d]*Sqrt[e]*Sqrt[a*e + c*d*x])/(
Sqrt[c*d]*Sqrt[c*d^2 - a*e^2])]))/(24*(c*d)^(5/2)*e^(5/2)*Sqrt[(a*e + c*d*x)*(d + e*x)])

________________________________________________________________________________________

Maple [B]  time = 0.047, size = 566, normalized size = 2.8 \begin{align*}{\frac{1}{3\,e} \left ( cde \left ({\frac{d}{e}}+x \right ) ^{2}+ \left ( a{e}^{2}-c{d}^{2} \right ) \left ({\frac{d}{e}}+x \right ) \right ) ^{{\frac{3}{2}}}}+{\frac{aex}{4}\sqrt{cde \left ({\frac{d}{e}}+x \right ) ^{2}+ \left ( a{e}^{2}-c{d}^{2} \right ) \left ({\frac{d}{e}}+x \right ) }}+{\frac{{a}^{2}{e}^{2}}{8\,cd}\sqrt{cde \left ({\frac{d}{e}}+x \right ) ^{2}+ \left ( a{e}^{2}-c{d}^{2} \right ) \left ({\frac{d}{e}}+x \right ) }}-{\frac{{e}^{4}{a}^{3}}{16\,cd}\ln \left ({ \left ({\frac{a{e}^{2}}{2}}-{\frac{c{d}^{2}}{2}}+ \left ({\frac{d}{e}}+x \right ) cde \right ){\frac{1}{\sqrt{dec}}}}+\sqrt{cde \left ({\frac{d}{e}}+x \right ) ^{2}+ \left ( a{e}^{2}-c{d}^{2} \right ) \left ({\frac{d}{e}}+x \right ) } \right ){\frac{1}{\sqrt{dec}}}}+{\frac{3\,{a}^{2}{e}^{2}d}{16}\ln \left ({ \left ({\frac{a{e}^{2}}{2}}-{\frac{c{d}^{2}}{2}}+ \left ({\frac{d}{e}}+x \right ) cde \right ){\frac{1}{\sqrt{dec}}}}+\sqrt{cde \left ({\frac{d}{e}}+x \right ) ^{2}+ \left ( a{e}^{2}-c{d}^{2} \right ) \left ({\frac{d}{e}}+x \right ) } \right ){\frac{1}{\sqrt{dec}}}}-{\frac{3\,a{d}^{3}c}{16}\ln \left ({ \left ({\frac{a{e}^{2}}{2}}-{\frac{c{d}^{2}}{2}}+ \left ({\frac{d}{e}}+x \right ) cde \right ){\frac{1}{\sqrt{dec}}}}+\sqrt{cde \left ({\frac{d}{e}}+x \right ) ^{2}+ \left ( a{e}^{2}-c{d}^{2} \right ) \left ({\frac{d}{e}}+x \right ) } \right ){\frac{1}{\sqrt{dec}}}}-{\frac{c{d}^{2}x}{4\,e}\sqrt{cde \left ({\frac{d}{e}}+x \right ) ^{2}+ \left ( a{e}^{2}-c{d}^{2} \right ) \left ({\frac{d}{e}}+x \right ) }}-{\frac{c{d}^{3}}{8\,{e}^{2}}\sqrt{cde \left ({\frac{d}{e}}+x \right ) ^{2}+ \left ( a{e}^{2}-c{d}^{2} \right ) \left ({\frac{d}{e}}+x \right ) }}+{\frac{{c}^{2}{d}^{5}}{16\,{e}^{2}}\ln \left ({ \left ({\frac{a{e}^{2}}{2}}-{\frac{c{d}^{2}}{2}}+ \left ({\frac{d}{e}}+x \right ) cde \right ){\frac{1}{\sqrt{dec}}}}+\sqrt{cde \left ({\frac{d}{e}}+x \right ) ^{2}+ \left ( a{e}^{2}-c{d}^{2} \right ) \left ({\frac{d}{e}}+x \right ) } \right ){\frac{1}{\sqrt{dec}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/(e*x+d),x)

[Out]

1/3/e*(c*d*e*(d/e+x)^2+(a*e^2-c*d^2)*(d/e+x))^(3/2)+1/4*e*a*(c*d*e*(d/e+x)^2+(a*e^2-c*d^2)*(d/e+x))^(1/2)*x+1/
8*e^2*a^2/d/c*(c*d*e*(d/e+x)^2+(a*e^2-c*d^2)*(d/e+x))^(1/2)-1/16*e^4*a^3/d/c*ln((1/2*a*e^2-1/2*c*d^2+(d/e+x)*c
*d*e)/(d*e*c)^(1/2)+(c*d*e*(d/e+x)^2+(a*e^2-c*d^2)*(d/e+x))^(1/2))/(d*e*c)^(1/2)+3/16*e^2*a^2*d*ln((1/2*a*e^2-
1/2*c*d^2+(d/e+x)*c*d*e)/(d*e*c)^(1/2)+(c*d*e*(d/e+x)^2+(a*e^2-c*d^2)*(d/e+x))^(1/2))/(d*e*c)^(1/2)-3/16*a*d^3
*c*ln((1/2*a*e^2-1/2*c*d^2+(d/e+x)*c*d*e)/(d*e*c)^(1/2)+(c*d*e*(d/e+x)^2+(a*e^2-c*d^2)*(d/e+x))^(1/2))/(d*e*c)
^(1/2)-1/4/e*c*d^2*(c*d*e*(d/e+x)^2+(a*e^2-c*d^2)*(d/e+x))^(1/2)*x-1/8/e^2*c*d^3*(c*d*e*(d/e+x)^2+(a*e^2-c*d^2
)*(d/e+x))^(1/2)+1/16/e^2*c^2*d^5*ln((1/2*a*e^2-1/2*c*d^2+(d/e+x)*c*d*e)/(d*e*c)^(1/2)+(c*d*e*(d/e+x)^2+(a*e^2
-c*d^2)*(d/e+x))^(1/2))/(d*e*c)^(1/2)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/(e*x+d),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.76744, size = 1125, normalized size = 5.6 \begin{align*} \left [-\frac{3 \,{\left (c^{3} d^{6} - 3 \, a c^{2} d^{4} e^{2} + 3 \, a^{2} c d^{2} e^{4} - a^{3} e^{6}\right )} \sqrt{c d e} \log \left (8 \, c^{2} d^{2} e^{2} x^{2} + c^{2} d^{4} + 6 \, a c d^{2} e^{2} + a^{2} e^{4} - 4 \, \sqrt{c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x}{\left (2 \, c d e x + c d^{2} + a e^{2}\right )} \sqrt{c d e} + 8 \,{\left (c^{2} d^{3} e + a c d e^{3}\right )} x\right ) - 4 \,{\left (8 \, c^{3} d^{3} e^{3} x^{2} - 3 \, c^{3} d^{5} e + 8 \, a c^{2} d^{3} e^{3} + 3 \, a^{2} c d e^{5} + 2 \,{\left (c^{3} d^{4} e^{2} + 7 \, a c^{2} d^{2} e^{4}\right )} x\right )} \sqrt{c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x}}{96 \, c^{2} d^{2} e^{3}}, -\frac{3 \,{\left (c^{3} d^{6} - 3 \, a c^{2} d^{4} e^{2} + 3 \, a^{2} c d^{2} e^{4} - a^{3} e^{6}\right )} \sqrt{-c d e} \arctan \left (\frac{\sqrt{c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x}{\left (2 \, c d e x + c d^{2} + a e^{2}\right )} \sqrt{-c d e}}{2 \,{\left (c^{2} d^{2} e^{2} x^{2} + a c d^{2} e^{2} +{\left (c^{2} d^{3} e + a c d e^{3}\right )} x\right )}}\right ) - 2 \,{\left (8 \, c^{3} d^{3} e^{3} x^{2} - 3 \, c^{3} d^{5} e + 8 \, a c^{2} d^{3} e^{3} + 3 \, a^{2} c d e^{5} + 2 \,{\left (c^{3} d^{4} e^{2} + 7 \, a c^{2} d^{2} e^{4}\right )} x\right )} \sqrt{c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x}}{48 \, c^{2} d^{2} e^{3}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/(e*x+d),x, algorithm="fricas")

[Out]

[-1/96*(3*(c^3*d^6 - 3*a*c^2*d^4*e^2 + 3*a^2*c*d^2*e^4 - a^3*e^6)*sqrt(c*d*e)*log(8*c^2*d^2*e^2*x^2 + c^2*d^4
+ 6*a*c*d^2*e^2 + a^2*e^4 - 4*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(2*c*d*e*x + c*d^2 + a*e^2)*sqrt(c*d
*e) + 8*(c^2*d^3*e + a*c*d*e^3)*x) - 4*(8*c^3*d^3*e^3*x^2 - 3*c^3*d^5*e + 8*a*c^2*d^3*e^3 + 3*a^2*c*d*e^5 + 2*
(c^3*d^4*e^2 + 7*a*c^2*d^2*e^4)*x)*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x))/(c^2*d^2*e^3), -1/48*(3*(c^3*d
^6 - 3*a*c^2*d^4*e^2 + 3*a^2*c*d^2*e^4 - a^3*e^6)*sqrt(-c*d*e)*arctan(1/2*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*
e^2)*x)*(2*c*d*e*x + c*d^2 + a*e^2)*sqrt(-c*d*e)/(c^2*d^2*e^2*x^2 + a*c*d^2*e^2 + (c^2*d^3*e + a*c*d*e^3)*x))
- 2*(8*c^3*d^3*e^3*x^2 - 3*c^3*d^5*e + 8*a*c^2*d^3*e^3 + 3*a^2*c*d*e^5 + 2*(c^3*d^4*e^2 + 7*a*c^2*d^2*e^4)*x)*
sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x))/(c^2*d^2*e^3)]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(3/2)/(e*x+d),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: TypeError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/(e*x+d),x, algorithm="giac")

[Out]

Exception raised: TypeError